1. Introduction

Stress in plants refers to external conditions that adversely affect growth, development or productivity of plants [1]. Stresses trigger a wide range of plant responses like altered gene expression, cellular metabolism, changes in growth rates, crop yields, etc. A plant stress usually reflects some sudden changes in environmental condition. However in stress tolerant plant species, exposure to a particular stress leads to acclimation to that specific stress in a time time-dependent manner [1]. Plant stress can be divided into two primary categories namely abiotic stress and biotic stress. Abiotic stress imposed on plants by environment may be either physical or chemical, while as biotic stress exposed to the crop plants is a biological unit like diseases, insects, etc. [1]. Some stresses to the plants injured them as such that plants exhibit several metabolic dysfunctions [1]. The plants can be recovered from injuries if the stress is mild or of short term as the effect is temporary while as severe stresses leads to death of crop plants by preventing flowering, seed formation and induce senescence [1]. Such plants will be considered to be stress susceptible. However several plants like desert plants (Ephemerals) can escape the stress altogether [2].

Biotic stress in plants is caused by living organisms, specially viruses, bacteria, fungi, nematodes, insects, arachnids and weeds. The agents causing biotic stress directly deprive their host of its nutrients can lead to death of plants. Biotic stress can become major because of pre- and postharvest losses. Despite lacking the adaptive immune system plants can counteract biotic stresses by evolving themselves to certain sophisticated strategies. The defense mechanisms which act against these stresses are controlled genetically by plant’s genetic code stored in them. The resistant genes against these biotic stresses present in plant genome are encoded in hundreds. The biotic stress is totally different from abiotic stress, which is imposed on plants by non-living factors such as salinity, sunlight, temperature, cold, floods and drought having negative impact on crop plants. It is the climate in which the crop lives that decides what type of biotic stress may be imposed on crop plants and also the ability of the crop species to resist that particular type of stress. Many biotic stresses affect photosynthesis, as chewing insects reduce leaf area and virus infections reduce the rate of photosynthesis per leaf area.

Abiotic stresses such as drought (water stress), excessive watering (water logging), extreme temperatures (cold, frost and heat), salinity and mineral toxicity negatively impact growth, development, yield and seed quality of crop and other plants. In future it is predicted that fresh water scarcity will increase and ultimately intensity of abiotic stresses will increase. Hence there is an urgency to develop crop varieties that are resilient to abiotic stresses to ensure food security and safety in coming years. A plants first line of defense against abiotic stress is in its roots. The chances of surviving stressful conditions will be high if the soil holding the plant is healthy and biologically diverse. One of the primary responses to abiotic stress such as high salinity is the disruption of the Na+/K+ ratio in the cytoplasm of the plant cell. The phytohormone abscisic acid (ABA) plays an important role during plant adaptation to environmental stress such as high salinity, drought, low temperature or mechanical wounding [3].

Rate this post

Viết một bình luận